APL-2, a Complement C3 Inhibitor, Slows the Growth of Geographic Atrophy Secondary to AMD: 18-Month Results
Financial Disclosures

• PLEASE ADD
The Complement System and Geographic Atrophy

Lectin Pathway **Classical Pathway** **Alternative Pathway**

- **APL-2**
- **Factor D**

Inflammation

- **C3a**
- **C3b**

- **Cell removal, Antigen uptake by APCs**

- **Cell death, secretion, lysis or proliferation**

Factors

- C3
- C5
- C3a
- C3b
- C5a
- C5b
- MAC
- C3a
- C3b
- C5
- C5a
- C5b
- MAC
- C3a
- C3b
- C5
- C5a
- C5b
- MAC

3
Phase 2 Study Design

Eligible Patients with Geographic Atrophy*
246 subjects in 43 sites†

Randomized 2:2:1:1

Single Masked

APL-2 15 mg Monthly
(AM)
N=86

APL-2 15 mg Every Other Month
(EOM)
N=79

Sham Monthly
(SM)
N=41

Sham Every Other Month
(SEOM)
N=40

Randomization

Treatment Period‡

Follow up

*Confirmed by the central reading center using FAF images, †Not counting the 3 satellite sites. ‡Subjects also had a safety visit at Day 7.
Endpoints

Primary efficacy endpoint
Change in square root geographic atrophy lesion size from baseline to month 12

Primary safety endpoint
Number and severity of local and systemic treatment emergent adverse events
Key Inclusion/Exclusion Criteria

• Inclusion Criteria:
 – Age ≥ 50 years
 – GA due to AMD confirmed by the central reading center using FAF images:
 ▪ Total GA area 2.5 to 17.5 mm2 (1 to 7 DA) at Screening
 ▪ For multifocal GA, at least one lesion with ≥ 1.25 mm2 (0.5 DA)
 ▪ Can be measured separately from any area of peripapillary atrophy
 ▪ Perilesional hyperautofluorescence present (any pattern)
 – BCVA (ETDRS charts) of 24 letters or better (20/320 Snellen equivalent)

• Exclusion Criteria:
 – GA due to causes other than AMD, or retina disease other than AMD
 – History or current evidence of neovascular AMD

 Note: No exclusion criteria associated with the fellow eye
Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Sham Injections n= 81</th>
<th>APL-2 EOM n= 79</th>
<th>APL-2 Monthly n= 86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral GA, n (%)</td>
<td>72 (90.0%)</td>
<td>64 (82.1%)</td>
<td>71 (85.5%)</td>
</tr>
<tr>
<td>History of CNV in Fellow Eye, n (%)</td>
<td>29 (35.8%)</td>
<td>28 (35.4%)</td>
<td>36 (41.9%)</td>
</tr>
<tr>
<td>GA lesion size, mean, mm² (SD)</td>
<td>8.2 (4.1)</td>
<td>8.9 (4.5)</td>
<td>8.0 (3.8)</td>
</tr>
<tr>
<td>BCVA score, mean letters (SD)</td>
<td>59.8 (17.2)</td>
<td>58.4 (16.0)</td>
<td>59.8 (15.7)</td>
</tr>
<tr>
<td>BCVA score (Snellen equivalent)</td>
<td>20/63</td>
<td>20/80</td>
<td>20/63</td>
</tr>
<tr>
<td>LL-BCVA score, mean letters (SD)</td>
<td>33.6 (17.8)</td>
<td>31.4 (17.1)</td>
<td>36.3 (16.6)</td>
</tr>
</tbody>
</table>
APL-2 Slows GA Growth at 12 Months (square root)

Modified Intent to Treat population (mITT), Observed, Mixed-Effect Model

Sham Injections

APL-2 EOM

APL-2 Monthly

Change from baseline in square root GA lesion growth (mm)

20% lesion growth difference p=0.067 vs Sham

29% lesion growth difference p=0.008 vs Sham
Sensitivity Analysis

<table>
<thead>
<tr>
<th>Population</th>
<th>Sham Pooled</th>
<th>APL-2 EOM</th>
<th>APL-2 Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>mITT Population (primary endpoint)</td>
<td>n*</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>LS Mean (SE)</td>
<td>0.35 (0.025)</td>
<td>0.28 (0.026)</td>
<td>0.25 (0.025)</td>
</tr>
<tr>
<td>Reduction vs Sham</td>
<td>20%</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>p-value (vs Sham)</td>
<td>0.067</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Per protocol Population</td>
<td>n*</td>
<td>73</td>
<td>71</td>
</tr>
<tr>
<td>LS Mean (SE)</td>
<td>0.35 (0.026)</td>
<td>0.28 (0.027)</td>
<td>0.26 (0.027)</td>
</tr>
<tr>
<td>Reduction vs Sham</td>
<td>20%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>p-value (vs Sham)</td>
<td>0.05</td>
<td>0.019</td>
<td></td>
</tr>
</tbody>
</table>

* Number of subjects who contributed to the analysis
Lesion Growth by Six-month Periods (square root) – 12 months

Sham Injections

APL-2 EOM

APL-2 Monthly

Data from subjects with a measurable GA lesion size at both Months 6 & 12

33% lesion growth difference vs sham p=0.01

47% lesion growth difference vs sham p < 0.001
Change from baseline in square root of GA area at 48 wk, mm in the Phase 3 Lampalizumab (Chroma and Spectri)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Sham</th>
<th>Lampalizumab, 10 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pooled (n=598)</td>
<td>q4w (n=596)</td>
</tr>
<tr>
<td>Adjusted mean (SE)</td>
<td>0.342 (0.007)</td>
<td>0.349 (0.007)</td>
</tr>
<tr>
<td>Difference in means (vs sham pooled)</td>
<td>0.006</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Holz, F.G., et al., Efficacy and Safety of Lampalizumab for Geographic Atrophy Due to Age-Related Macular Degeneration: Chroma and Spectri Phase 3 Randomized Clinical Trials. JAMA Ophthalmol, 2018
After cessation of treatment at 12 months, GA growth resumes but treatment effect is maintained through 18 months (square root).

Sham Injections

APL-2 EOM

APL-2 Monthly

<table>
<thead>
<tr>
<th>Time</th>
<th>Sham Injections</th>
<th>APL-2 EOM</th>
<th>APL-2 Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>0.49</td>
<td>0.41</td>
<td>0.39</td>
</tr>
<tr>
<td>6 months</td>
<td>0.41</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>18 months</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
</tr>
</tbody>
</table>

16% lesion growth difference vs Sham: p=0.097

20% lesion growth difference vs Sham: p=0.044
Lesion Growth by Six-month Periods (*square root*) – 18 Months

Data from subjects with a measurable GA lesion size at Months 6 & 12 & 18
GA Growth Comparison: Fellow Eye vs Study Eye

post hoc analysis

- **Sham Injections**
 - n= 72

- **APL-2 EOM**
 - n= 63
 - 10% Difference
 - p > 0.1

- **APL-2 Monthly**
 - n= 69
 - 23% Difference
 - p = 0.083

Includes patients from the Bilateral GA Population
Changes in Best-Corrected Visual Acuity

No differences were observed in visual outcomes between groups

Modified Intent to Treat population (mITT), Observed, Mixed-Effect Model
A mixed effect model with main effects of treatment, visit and GA lesion at baseline, and interactions of treatment x visit, visit x baseline.
mITT = All subjects receiving at least one injection and having at least one FAF image after day 1
Adverse Event Profile

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>APL-2 Monthly N=86</th>
<th>APL-2 EOM N=79</th>
<th>Sham Pooled N=81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocular SAEs in study eye*</td>
<td>4 (4.7%)</td>
<td>2 (2.5%)</td>
<td>1 (1.2%)</td>
</tr>
<tr>
<td>Systemic SAEs</td>
<td>19 (22.1%)</td>
<td>24 (30.4%)</td>
<td>23 (28.4%)</td>
</tr>
<tr>
<td>Treatment related ocular AEs in the study eye</td>
<td>22 (25.6%)</td>
<td>11 (13.9%)</td>
<td>0</td>
</tr>
<tr>
<td>Treatment related systemic AEs</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Ocular SAEs

<table>
<thead>
<tr>
<th></th>
<th>APL-2 Monthly N=86</th>
<th>APL-2 EOM N=79</th>
<th>Sham Pooled N=81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endophthalmitis*</td>
<td>2 (2.3%)</td>
<td>1 (1.3%)</td>
<td>0</td>
</tr>
<tr>
<td>IOP increased</td>
<td>1 (1.2%)†</td>
<td>1 (1.3%)</td>
<td>0</td>
</tr>
<tr>
<td>Retinal detachment</td>
<td>1 (1.2%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Visual impairment</td>
<td>0</td>
<td>0</td>
<td>1 (1.2%)</td>
</tr>
</tbody>
</table>

*2 culture positive for coagulase-negative Staphylococcus. 1 culture negative in the monthly group. †2 events in a subject
New Onset Exudation – 18 months

<table>
<thead>
<tr>
<th></th>
<th>APL-2 Monthly</th>
<th>APL-2 EOM</th>
<th>Sham Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Subjects</td>
<td>n = 86</td>
<td>n = 79</td>
<td>n = 81</td>
</tr>
<tr>
<td>Subjects with exudative AMD in Study eye(%)</td>
<td>18 (20.9%)</td>
<td>7 (8.9%)</td>
<td>1 (1.2%)</td>
</tr>
<tr>
<td>With History of CNV in Fellow Eye</td>
<td>n = 36</td>
<td>n = 28</td>
<td>n = 29</td>
</tr>
<tr>
<td>Subjects with exudative AMD in Study eye(%)</td>
<td>13 (36.1%)</td>
<td>5 (17.9%)</td>
<td>0</td>
</tr>
<tr>
<td>No CNV History in Fellow Eye</td>
<td>n = 50</td>
<td>n = 51</td>
<td>n = 52</td>
</tr>
<tr>
<td>Subjects with exudative AMD in Study eye(%)</td>
<td>5 (10.0%)</td>
<td>2 (3.9%)</td>
<td>1 (1.9%)</td>
</tr>
</tbody>
</table>

- The majority of patients that developed exudative AMD had minor loss of vision and were treated with anti-VEGF therapy
- Six patients developed exudative AMD in the 12-18 months non-treatment period (5/6 had fellow eye with history of CNV)
• APL-2 reduced the progression of GA secondary to AMD in the largest Phase 2 GA trial (n=246)

• Results correlated to treatment frequency with increasing effect size over time

• Further evidence from intra-patient control

• Upon discontinuation of APL-2, treatment effect declined

• Apellis announced first patient enrolled in the global Phase 3 study